RESEARCH

COMPUTER VISION

Unsupervised Generation of Free-Form and Parameterized Avatars

August 13, 2018

Abstract

We study two problems involving the task of mapping images between different domains. The first problem, transfers an image in one domain to an analog image in another domain. The second problem, extends the previous one by mapping an input image to a tied pair, consisting of a vector of parameters and an image that is created using a graphical engine from this vector of parameters. Similar to the first problem, the mapping's objective is to have the output image as similar as possible to the input image. In both cases, no supervision is given during training in the form of matching inputs and outputs. We compare the two unsupervised learning problems to the problem of unsupervised domain adaptation, define generalization bounds that are based on discrepancy, and employ a GAN to implement network solutions that correspond to these bounds. Experimentally, our methods are shown to solve the problem of automatically creating avatars.

Download the Paper

AUTHORS

Written by

Adam Polyak

Lior Wolf

Yaniv Taigman

Publisher

TPAMI: SI: ICCV

Research Topics

Computer Vision

Related Publications

May 14, 2025

RESEARCH

CORE MACHINE LEARNING

UMA: A Family of Universal Models for Atoms

Brandon M. Wood, Misko Dzamba, Xiang Fu, Meng Gao, Muhammed Shuaibi, Luis Barroso-Luque, Kareem Abdelmaqsoud, Vahe Gharakhanyan, John R. Kitchin, Daniel S. Levine, Kyle Michel, Anuroop Sriram, Taco Cohen, Abhishek Das, Ammar Rizvi, Sushree Jagriti Sahoo, Zachary W. Ulissi, C. Lawrence Zitnick

May 14, 2025

May 13, 2025

HUMAN & MACHINE INTELLIGENCE

RESEARCH

Dynadiff: Single-stage Decoding of Images from Continuously Evolving fMRI

Marlène Careil, Yohann Benchetrit, Jean-Rémi King

May 13, 2025

April 25, 2025

RESEARCH

NLP

ReasonIR: Training Retrievers for Reasoning Tasks

Rulin Shao, Qiao Rui, Varsha Kishore, Niklas Muennighoff, Victoria Lin, Daniela Rus, Bryan Kian Hsiang Low, Sewon Min, Scott Yih, Pang Wei Koh, Luke Zettlemoyer

April 25, 2025

April 17, 2025

HUMAN & MACHINE INTELLIGENCE

CONVERSATIONAL AI

Collaborative Reasoner: Self-improving Social Agents with Synthetic Conversations

Ansong Ni, Ruta Desai, Yang Li, Xinjie Lei, Dong Wang, Ramya Raghavendra, Gargi Ghosh, Daniel Li (FAIR), Asli Celikyilmaz

April 17, 2025

Help Us Pioneer The Future of AI

We share our open source frameworks, tools, libraries, and models for everything from research exploration to large-scale production deployment.